(CE) EE3444

For our purposes we work in terms of V_i, I_i, V_o, I_o.

Consider the following quantities:

1. Voltage Amplification
2. Input Resistance
3. Current Amplification
4. Output Resistance

Consider the following node equation, assuming $r_o \to \infty$.

\[V_o \left[g_o + G_c + G_L \right] + g_m V_{ir} = 0 \]

On the other hand

\[V_{ir} = \frac{r_{\pi} V_i}{r_o + r_{\pi}} \]

So

\[V_o \left[g_o + G_c + G_L \right] + \frac{g_m r_{\pi} V_i}{r_o + r_{\pi}} = 0 \]
\[
A_{oi} = \frac{V_o}{V_i} = \frac{-g_m \pi r_t}{(g_o + g_c + g_L)(r_t + r_b)} \\
\approx -g_m (\frac{R_e}{r_t}) \quad \text{assuming} \quad \begin{array}{l}
g_o << g_c + g_L \\
r_b << r_t
\end{array}
\]

Note:
It is reasonable to neglect \(r_m \) as long as \(\frac{I_m}{I_t} < 0.05 \). This leads to \((g_o + g_c + g_L) > 20 g_m h \).

(2) \((\text{Input})\) we find \(Z_{in} = \frac{V_i}{I_i} \)

So, \(I_i = \frac{V_i}{R_b} + \frac{V_i}{R_b(r_t + r_b)} = \frac{V_i R_b + V_i r_t + r_b}{R_b(r_t + r_b)} \)

So, \(Z_{in} = \frac{V_i}{I_i} = \frac{R_b(r_t + r_b)}{R_b + r_t + r_b} \)

(3) \((\text{Current Amplification})\)

\[
A_i = \frac{I_o}{I_i} = \left(\frac{V_o}{V_i} \right) \left(\frac{R_e}{R_i} \right) = A_{oi} \left(\frac{R_i}{R_e} \right) = \frac{-g_m \pi R_e}{(g_o + g_c + g_L)(R_e + r_t + r_b) R_L}
\]
(4) Output Impedance Defined as resistance seen looking back into the amplifier with \(V_i = 0 \).

\[
\begin{align*}
\left(R_o \right) & = \frac{V_o}{I_x} = \frac{1}{2o + G_c}
\end{align*}
\]

Very commonly a CE amplifier is modified to have AC feedback via an emitter resistor. Let's see what effect that has:

\[
\begin{align*}
V_o & = (G_c + G_L) + g_m V_{\pi} = 0 \\
V_e & = (V_{\pi} g_\pi + g_m V_{\pi}) R_E \\
V_i & = V_{\pi} g_\pi (r + r_{\pi}) + V_e \\
& = V_{\pi} \left[G_c g_\pi + 1 + (g_\pi + g_m) R_E \right]
\end{align*}
\]
Combining the 3 equations leads to

$$A_{vi} = \frac{V_o}{V_i} = \frac{-g_m}{[g_m r_o + 1 + (g_m + g_m) R_e][G_e + G_C]}$$

$$\approx \frac{-g_m}{(1 + gm R_e)(G_e + G_C)} \approx -\frac{R_{em} R_L}{R_e}$$

when \(g_m R_e \gg 1 \).

Working through a little algebra

$$R_i = \frac{V_i}{I_i} = \frac{R_e \left[r_o + r_\pi + (1 + gm r_\pi) R_e \right]}{R_e + r_o + r_\pi + (1 + gm r_\pi) R_e}$$

$$\approx R_{em} \left[r_\pi + (1 + \beta) R_e \right] \text{ for } r_\pi \gg r_o$$

$$A_i = \frac{I_o}{I_i} = \frac{V_o}{V_i} \frac{R_i}{R_L} = \frac{-g_m G_e R_e}{(G_e + G_C)(R_e + r_o + r_\pi + (1 + \beta) R_e)}$$

If \(r_o \) is ignored then

$$R_e \approx R_{em}.$$

If \(r_o \) is not ignored then

$$R_e \approx R_{em} \left(1 + \frac{\beta_o R_e}{R_o + r_o + R_e} \right)$$
Voltage Amplification

At the collector node:

\[V_o G_c + V_o G_e + V_o g_o + g_m V_r = V_i \frac{g_m}{r_m + r_o} \]

But \[V_r = \frac{-r_m V_i}{r_m + r_o} \]

Combining these 2 equations leads to:

\[A_v = \frac{V_o}{V_i} = \left[\frac{1}{(G_c + G_e + g_o)} \right] \left[g_o + \frac{g_m r_m}{r_m + r_o} \right] \]
\[EE3444 \]

\[\approx \frac{2m}{G_c + G_L} = gm R_{e1} R_L \]

making the same assumptions as before.

Input Resistance

\[\frac{V_i}{r_{in}} \]

\[I_i = \frac{V_i}{R_e} + \frac{V_i}{r_{in} + r_b} + \frac{V_i}{r_o} - \frac{V_o}{r_o} \approx gm V_i \]

Substituting in forms for \(A_{vi} \) and \(V_{in} \) we obtain

\[R_i = \frac{V_i}{I_i} = \frac{r_{in} + r_b}{G_c (r_{in} + r_b) + 1 + gm r_{in}} \approx \frac{1}{G_c + gm} \]

Current Amplification

As before

\[A_i = \frac{I_o}{I_i} = \frac{V_o}{V_i} \frac{R_i}{R_L} = \frac{gm}{(G_c + G_L) + \frac{G_c (r_{in} + r_b) + gm r_{in}}{G_c + gm}} \]

\[\approx \frac{gm G_L}{(G_c + G_L)(G_c + gm)} \]