1. (20 pts) Determine the rms value, \(V_{\text{rms}} \), for the waveform shown below.

![Waveform Diagram]

\[v(t) = \left(\frac{9 - 3}{4 - 1} \right) t + b = \frac{6}{3} t + b = 2t + b \]

where \(b \) is the intercept. At \(t = 1 \) sec, \(v(1) = 3 \).

\[3 = 2(1) + b \] or \(b = 3 - 2 = 1 \), thus \(v(t) = 2t + 1 \)

\[V_{\text{rms}} = \sqrt{\frac{1}{T} \int_{t=a}^{t=b} (2t + 1)^2 dt} = \sqrt{\frac{1}{3} \int_{t=1}^{4} (4t^2 + 4t + 1) dt} = \sqrt{\frac{1}{3} \left[\frac{4}{3} t^3 + \frac{4}{2} t^2 + t \right]_{t=1}} \]

\[= \sqrt{\frac{1}{3} \left[(85.33 + 32 + 4) - (1.33 + 2 + 1) \right]} = \sqrt{\frac{117}{3}} = 6.245 \]

\(V_{\text{rms}} = 6.245 \) volts
2. (20 pts) An inductor has been added to the load in the circuit shown below in order to maximize the power absorbed by the resistor R. What value of resistance R and what value of inductance, L, should be used to accomplish that objective?

![Circuit Diagram]

Solution

$$X_C = \frac{1}{\omega C} = \frac{10^6}{4 \times 10^3} = 250$$

$$Z_{load} = Z_{thev}$$ then

$$\frac{1}{Z_{load}} = \frac{1}{Z_{thev}}$$ therefore,

$$Y_{load} = Y_{thev}$$

$$Y_{thev} = \left(\frac{1}{500 - j250}\right)^* = 0.0016 - j0.0008$$

$$Y_{load} = \frac{1}{R} - j\frac{1}{\omega L} = 0.0016 - j0.0008$$

$$\therefore R = \frac{1}{0.0016} = 625 \, \Omega$$

$$\therefore \omega L = \frac{1}{0.0008} = 1,250 \, \Omega$$

$$\therefore L = \frac{1.250}{4,000} = 0.3125 \, H$$

$R = 625 \, \Omega$

$L = 0.3125 \, H$
3. (20 pts) Find the input impedance Z for the circuit shown below.

![Circuit Diagram]

Solution

Express I_3 in terms of V_1 and V_2. Then express V_2 in terms of V_1

$$I_3 = \frac{V_1 - V_2}{6} = \frac{V_1 + 2V_1}{6} = \frac{3V_1}{6} = \frac{V_1}{2}$$

Current through 2 Ω resistor (I_4):

$$I_4 = I_2 + I_3 = \frac{V_2}{2}$$

but $I_3 = \frac{V_1}{2}$ therefore

$$I_2 = \frac{V_2}{2} - \frac{V_1}{2} = \frac{-2V_1}{2} - \frac{V_1}{2} = \frac{-3V_1}{2}$$

Now substitute for I_2

$$\frac{I_1}{2} = \frac{-3V_1}{2}$$

or $I_1 = 3V_1$ Now, back to Z

$$Z = \frac{V_1}{I_1 + I_3} = \frac{V_1}{3V_1 + \frac{V_1}{2}} = \frac{2}{6 + 1} = \frac{2}{7} \Omega = 0.2857 \Omega$$

$Z = 0.2857 \Omega$
4. A three-phase source with a line voltage of 35 kV rms is connected to two balanced loads. The Y-connected load has phase impedance of \(Z = 20 + j30 \, \Omega \), and the \(\Delta \) load has a phase impedance of \(60 + j30 \, \Omega \). The connecting lines have an impedance of \(Z_{\text{line}} = 0.1 + j0.4 \, \Omega \). Determine (a) [10 pts] the three-phase power delivered to the loads, and (b) [10 pts] the three-phase power lost in the wires.

Solution

Convert the \(\Delta \)-load to Y-load equivalent

\[
Z_2 = \frac{60 + j30}{3} = 20 + j10
\]

The original Y-load impedance is \(Z_l = 20 + j30 \)

The equivalent source phase voltage is \(V_{an} = \frac{35,000[0^\circ]}{\sqrt{3}} = 20,207.26[0^\circ] \)

The equivalent impedance of both loads in parallel is

\[
Z_{\text{equ}} = \frac{(20 + j30)(20 + j10)}{20 + j30 + 20 + j10} = 11.25 + j8.75
\]

\[
I_{A1} = \frac{V_{an}}{Z_{\text{line}} + Z_{\text{equ}}} = \frac{20,207.26[0^\circ]}{0.1 + j0.4 + 11.25 + j8.75} = 1,386.06[-38.874^\circ]
\]

\[
P_{\text{load1}} = |I_{A1}|^2 R_{\text{equ}} = (1,386.06)^2 (11.25) = 21,613,076 \, \text{W}
\]

\[
P_{\text{load3}} = 3P_{\text{load1}} = 64,839,228 \, \text{W}
\]

\[
P_{\text{line1}} = |I_{A1}|^2 R_{\text{line}} = (1,386.06)^2 (0.1) = 192,116 \, \text{W}
\]

\[
P_{\text{line3}} = 3P_{\text{line1}} = 576,349 \, \text{W}
\]

(a) \(P_{\text{load}} = 64,839,228 \, \text{watts} \)

(b) \(P_{\text{line}} = 576,349 \, \text{watts} \)
5. The balanced three-phase load of a large commercial building requires 600 kW at a leading power factor of 0.707. The load is supplied by a connecting line with an impedance of $Z_{\text{line}} = 0.004 + j0.024 \ \Omega$ for each phase. The load has a line-to-line voltage of 480 V rms. Determine (a) [10 pts] the magnitude of the line current and the magnitude of the line voltage at the source, and (b) [10 pts] the power factor at the source. Use the line-to-neutral voltage at the load as the reference with an angle of zero degrees.

Solution

Power per phase in load: $P_{\phi} = \frac{600kW}{3} = 200kW$

Since power factor is 0.707 leading, the angle is -45°, therefore $Q_{\phi} = -200kVAR$

Assume Y-connected load, then $V_{AN} = \frac{480}{\sqrt{3}} [0^{\circ}] = 277.13 [0^{\circ}]$

\[I_{\phi} = \frac{S_{\phi}^{*}}{V_{AN}^{*}} = \frac{200,000 + j200,000}{277.13} = 1,020.61 [45^{\circ}] \]

\[I_{\text{line}} = |I_{\phi}| = 1,020.61 \]

\[V_{an} = Z_{\text{line}} I_{\phi} + V_{AN} = (0.004 + j0.024)1,020.61 [45^{\circ}] + 277.13 \]

\[V_{an} = 263.47 [4.4^{\circ}] \]

\[V_{line} = |V_{an}| = 263.47 \times \sqrt{3} = 456.35 \text{ volts} \]

$\theta_{pf} = \theta_{V_{an}} - \theta_{I_{\phi}} = 4.4^{\circ} - 45^{\circ} = -40.6^{\circ}$

\[\text{power factor} = \cos(-40.6^{\circ}) = 0.759 \text{ (leading)} \]

(a) $I_{\text{line}} = 1.020.61 \text{ A}$

$V_{\text{line}} = 456.35 \text{ V}$

(b) power factor (source) 0.759 leading