Defect causes reflections in an input electrical signal.

Basics of Phase and Frequency Modulation

Then, in special cases of angle modulation, when a complex envelope is given by

\[j \theta(t) = A e^{j \omega t} \]

The real envelope is

\[R(t) = j \theta(t) = A \cos(\omega t + \phi(t)) \]

where \(A \) is a linear function of the modulating signal, \(\omega(t) \) is the angular signal given by

\[R(t) = A \cos(\omega(t) + \phi(t)) \]

For phase modulation, \(\phi(t) = D p \cdot m(t) \)

where \(Dp \) is the phase sensitivity.

For frequency modulation, \(\phi(t) = Df \int_0^t \omega(t') dt' \).

To get \(m(t) \),

\[Dp \int_0^t m(t') dt' = Df \int_0^t \omega(t') dt' \]

\[m(t) \Rightarrow Df \int_0^t \omega(t') dt' \]

Relationship between \(m(t) \) and \(m_f(t) \) - phase modulation or frequency modulation sign.

\[\omega_f \cdot \text{modulation frequency} \]

\[\omega_f \cdot \text{carrier frequency} \]

Input optical beam

[Diagram of optical setup with labels: \(\lambda_0, \lambda \), \(m_0+1 \), \(\lambda_{0,N} \), \(m=1 \), \(m=N \), \(\lambda_{0,1} = N \lambda_0 \)]

Raman-Nakagami and optical (dynamical generation)
The frequency of the diffracted beam is given by

$$\omega_n = \omega_i \pm n\Delta\omega$$

The angle of separation between the mth diffracted beam and the undiffracted beam is given by

$$\theta_m = \theta_{m+1} = \frac{\lambda}{2\pi K}$$

Where λ is the light wavelength, K is the wave number of the undiffracted beam, and m is a positive integer.

Consider the Klein-Gordon paradox for $m=0$

$$\theta = \frac{k_0 L}{k_0 \cos \theta_0}$$

About 40

Couple each radiation optical as zeroth order in the beam,

$$\frac{1}{2L} \left(E_{m+1} - E_{m-1} \right) = \frac{1}{2L} \int \frac{m K_0}{2\pi} - \sin \theta_0 \cdot \phi_m$$

Where E_m is the electric field of the mth order beam.

Number intensity of the mth order beam is given by

$$I_m = \frac{I_m}{I_0} = \int \frac{I_0 \sin^2 \left(\frac{K_0 L \tan \theta_0}{2} \phi \right)}{\left(L_2 L \tan \theta_0 / 2 \right)^2}$$
In practical applications, only one diffraction is utilized.
The criterion for Bragg's diffraction is that $\theta > \frac{\lambda}{d}$, where the grating is no longer thin, and the interference no longer depends on the incident angle.

For Bragg's diffraction, the diffracted beam intensity is maximum.

$$I_{1m} = \sin^2 \left(\frac{\theta}{2} \right)$$

Discussion: the grating model relates with:

Fred an equation relating diffraction angle to intensity and the signal power (waves).

1. How do we get Bragg's signal from θ? What is the relationship between Bragg's signal, power high θ and the diffraction we get?